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Abstract 

Network-like polymer systems are considered to be composed of thermodynamically 
equivalent subsystems. On deformation up to large strains, the shape of these subsystems is 
believed to be transformed according to the law of affinity. The thermodynamics of such 
systems is presented. This description is then extended so as to be able to describe relaxation 
processes. Special attention is directed to a discussion of constrained equilibrium states 
because of their being representative of many polymer systems. The methods of classical 
thermodynamics of irreversible processes are shown to be appropriate for describing large 
deformations of many different network-like systems such as polymer glasses and semicrys- 
talline polymers. 

For the deformation experiments discussed here, the whole energy balance during deforma- 
tion is known from stretching calorimetric measurements. This is a significant presumption 
for obtaining clear, fundamental conclusions; they would be difficult to achieve otherwise. 

Keywords: LDPE; Network, Polymer; Polymer glass; Relaxation; Thermodynamics 

1. Introduction 

Polymers are “network-like systems” [l-6]. In a melt this network is made up of 
entanglements. In semicrystalline systems, crystals operate as multifunctional junc- 
tions. All kinds of junctions might be considered as constraints restricting the 
conformation of chains and essentially determining their configuration during 
deformation. If junctions are released during deformation, irreversible processes 
begin. To describe such time-dependent processes in polymer network-like systems, 
we utilize the existence of equivalent subsystems of deformation. They are the 
smallest units that can be transformed according to the law of affinity [ 1,3]. The 
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ensemble of densely packed subsystems defines the global level of constraints. This 
“structural level” guarantees intrinsic homogeneity during deformation and makes 
network-like systems a natural candidate for the application of the thermodynamics 
of irreversible processes [7- 121. 

We present relations that allow time-dependent phenomena to be described in a 
generalized Onsager approach [ 13- 151. We are essentially interested in studying 
quasi-permanently constrained equilibrium states. General principles are deduced 
leading to a unique characterization of constrained equilibrium states in very 
different network-like systems. 

A most interesting example is the description of thermo-elasticity in cold-drawn 
polymer glasses [ 161. As an example of a non-homogeneous network-like system, 
we have studied the stress-strain behaviour of semicrystalline low-density 
polyethylene (LDPE) [ 1,3]. This is a representative candidate for many reasons. 
First of all we know the relevant parameters of the colloid structure. By describing 
the stress-strain behaviour, one then has, for example, the possibility of recognizing 
the mechanism and principles according to which this colloid structure is trans- 
formed during deformation. We can identify rules which control how the rubbery 
and crystalline regions cooperate. 

From stretching calorimetric measurements [ 17-211, the total energy balance is 
obtained. If irreversible processes come into play, special formulations are neces- 
sary. The description of these results alone demonstrates the power of the thermo- 
dynamics of irreversible processes. 

2. Thermodynamically equivalent subsystems 

The system is considered to be comprised of N@) homogeneous subsystems which 
are densely packed together. If there are no boundary effects and if each subsystem 
is in equilibrium we have the fundamental relationship 

dG’“’ = -S(@ dT + v@) dp +fdL’“’ (1) 

where the intensive variables temperature T, pressure p, and force f, should be equal 
over the whole assembly. The subsystem s shows the entropy S@‘, volume I’@’ and 
length L(“) in the direction of the force. 

Allowing for local exchange of extensive quantities, such as internal energy or 
volume, theremodynamic equilibrium is achieved. The subsystems are then thermo- 
dynamically equivalent. These subsystems should also represent smallest volume 
elements that are transformed according to the law of affinity. Hence, we arrive at 
the conditions 

(S’“‘) = s ( Y(S)) = V L(S) = L (2) 

If the number of subsystems is fixed during deformation 

dG = N’“‘[ -SC”’ dT + J”“’ dp +fdL’“‘] 

=-SdT+Vdp+fdL (3) 
S = N(S)SW V = N(S) VW L = NWLW 
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Hence, the macroscopic behaviour is a copy of processes synchronized over the 
whole subsystem assembly so as to guarantee that each is transformed according to 
the law of affinity. 

One may account for boundary effects if the mean size of the subsystems is 
known so as to formulate 

dG = dG” - dG”‘“’ = dG” 
( > 

1 - $ 

o@) dG” 
dG”‘“’ = R’“’ 

(4) 

where o(‘) is the interfacial free enthalpy related to the free enthalpy of equivalent 
subsystems. In the unstrained state they are assumed to be spheres of radius R(“). 
The relative interfacial situation may in general depend on the strain itself as well 
as on the type of strain. 

In an equilibrium system, the size of the subsystems, characteized by R(“), should 
be determined thermodynamically. Yet the interfacial effects are in general ex- 
tremely small (c(“)/R(“) c - 1). In most polymers, it is unlikely that the size of the 
subsystems is thermodynamically determined. We have to develop at least a 
treatment of constrained equilibrium states. Subsystems should then be character- 
ized. It might be that R(“’ as the “global hidden variable” can be used for defining 
these subsystems. The “hidden variable” R’“) would then determine the constraint- 
density in the subsystems network. 

3. Non-equilibrium states 

We assume that homogeneity is also guaranteed in non-equilibrium states. 
Moreover, the distance to equilibrium should be so small that we are allowed to use 
irreversible thermodynamics [7-121. The Gibbs relationship may be written as 
[13-151 

dG[T,p,(@‘)] = c dg’“‘[T,p,(@)] - f At’ d@’ 
s k=l 

(5) 

where A Is’ is the affinity of the k th relaxation mode in the subsystem (s) conjugated 
with the hidden variable tf). To allow deviation from equilibrium between subsys- 
tems leads to sophisticated and complicated situations [22]. If, however, local 
equilibrium is guaranteed by rapid processes, the subsystems should be equivalent 
even under non-equilibrium conditions. We are then led to the symmetry conditions 

(Ap’)=A, (51s’) = 5k (6) 

So we arrive at 

dG[T#,(t,)l = NcS) dg[t,P,(tl,)l - 5 A, dtk 
k=l > 

(7) 



68 H.G. KilianlThermochimica Acta 247 (1994) 65-86 

Relaxation modes are strictly synchronized within the whole assembly of subsys- 
tems. Modes of the same identity operate simultaneously within each of them. This 
model explains, for example, why relaxation in networks is synchronized up to the 
largest strains [ 151. Here, the relaxation modes seem to be coupled in a scalar and 
isotropic manner to the network, i.e. to the global level of the ensemble of 
equivalent subsystems. 

4. Constrained equilibrium 

Constrained equilibrium states are now clearly defined by fixing the whole set of 
hidden variables (d& = 0, & = const,). There might therefore exist a very large 
number of different constrained equilibrium states. The existence of the Gibbs 
potential in Eq. (5) requires that the extremum principles be fulfilled 

(8 rzV.(&) = maxI@,, 

(U) S,V.(&) = minl&) (8) 

(G) Tv~.p.(Ck) = en lm 

Provided the hidden variables (<J are constant, the extremum values of the 
thermodynamic potentials are well defined. Any set of hidden variables (&J 
describes a different constrained equilibrium state. Integrability conditions have to 
be satisfied. One of them reads 

(9) 

The differential heat of deformation is uniquely related to the temperature co- 
efficient of the force. We learn from the next relationship 

r=l,...,M (10) 
Ts~,P,(tr) 

that the distance from equilibrium determines how the force depends on the hidden 
variable &. 

5. An interesting example 

The deformation potential of an incompressible elastic continuum can be written 
as [23-251 

W=G& 

4 = l/2(12 + 2/1 - 3) 
(11) 

where G is the modulus, and 1 is the strain defined by 

1= L/L, (12) 
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with L as the macroscopical length in the direction of the force applied and L, the 
fiducial length. 

Let us discuss a Gaussian network comprised of phantom chains [24-261. The 
shear modulus is determined by the density of the permanent junctions. The 
modulus is proportional to the temperature 

Go = pRT/M, (13) 

where p is the mass density and MC is the molecular weight of the chains. 
To consider the junctions as permanent constraints is equivalent to defining the 

hidden variable & by 

C& = l/M, = N’“’ (14) 

where each Gaussian chain is assumed to operate as a permanent subsystem of 
deformation. We then arrive at 

aw 
f = - = GOD = &,pRTD 

a2 
DCA-1-2 

so that Eq. ( 10) reads 

af aA 
a5N = pRTD = -z 

(15) 

(16) 

The “distance to equilibrium” as given by the affinity A is equal to 

A = --pRT4 (17) 

Strain energy disappears in the unstrained network. This defines the equilibrium 
state of reference. In a strained network the entropy is reduced according to 

The distance to equilibrium is continuously increased with strain. In this model the 
phenomenological “hidden variable” tN defines a network. This example shows that 
it should be possible to characterize network-like systems even under more compli- 
cated conditions by describing quasi-static stress-strain experiments. 

6. Strain-induced release of junctions 

If the strengths of the junctions are low enough, strain-induced release of 
contacts (Al < 0) may be enforced during the stretch. The system has to go into 
new equilibrium states with a reduced density of junctions. At temperatures far 
above the glass transition these processes are different from the ones in the glass 
transition range or in polymer melts with entanglements as non-permanent junc- 
tions [27]. Relaxation runs very fast. At each strain the entropy is maximized nearly 
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immediately. If the junctions are released in unique dependence on strain, we are 
led to the entropy production 

(19) 

It holds true that strained networks with a strain-reduced density of junctions of the 
type under discussion here cannot recover their original density. 

This is one of the reasons why the junction density is mostly found to be constant 
when the system is unloaded. To discuss some interesting consequences, let us define 
as isotropic incompressible visco-elastic body, the modulus of which decreases, for 
example, proportionally to the strain. The mechanical equation of state is written as 

f=~(l.-i-2)=gN(1.)~(~-~-2)=Go(l-1-3) 
CO 

5h44 = i 
MT 

go = ~ 
MC0 

We arrive at the strain-energy function 

= M4 g(,,+,,) 
This system is mechanically stable 

df=G>O 
an ~4 

If the modulus decreases inversely proportionally to 1” 

f+-1) =G,(A(‘-“)-A-“) 

+,((l -a)~-“+~-“+“‘-~-“) 

(20) 

(21) 

(22) 

(23) 

we recognize that for LY > 1 the system is no longer stable. Under homogeneous 
deformation conditions, systems with a = 1 show the maximum release of junctions. 

7. Relaxation under strain-induced network transformation 

The above model is appropriate for discussing relaxation into the “softest state of 
reference” that might be represented by a network with decreasing density of 
junctions. To describe relaxation let us introduce the constitutive equation [ 1,13- 151 

(24) 
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A set of hidden variables (&) is coupled to the global level defined by the network 
itself. This network has the strain-energy density w(5). The & terms are constants 
for describing the elastic properties and the relaxation times. It was shown 
elsewhere [ 13- 1.51 that the time-dependent nominal force of the network-like 
“Onsager-type system” is equal to 

(25) 

where W is the strain energy function. For a Gaussian network, W is, for example, 
equal to Eq. ( 11). For a discrete relaxation time distribution hi (r,), the memory 
function is written as 

where ri is the relaxation time of the a priori Onsager mode, and hi is its relative 
fraction. I is the relaxation strength defined by the difference between the glass 
modulus G, and that of the network G, 

I- = G, - G,, (27) 

It is now crucial that we assume that the density of junctions decreases with strain. 
We have at least to account for the additional hidden variable t,.,, (see Eq. (20)). If 
relaxation is sufficiently rapid, the global level runs through constrained equilibrium 
states, making tN a unique function of strain. We restrict ourselves to these conditions. 

With the use of the strain energy function as defined in Eq. (21) we calculated 
stress-strain cycles as shown in Fig. 1. The shape depends on the strain energy 
function, on the strain rate and on the relaxation-time distribution. Hence, 
strain-induced modifications of the hidden variable tN should become identifiable 
by interpreting quasi-static stress-strain experiments. 

Fig. 1. Stress-strain cycles computed with the aid of Eqs. (Sl), (23, (48) and (26); quasi-static; --, 

finite constant strain rate. 
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8. Conclusions 

If the times determining the experimental window are very much larger than the 
relevant relaxation times we should observe the constrained equilibrium stress- 
strain pattern as represented by the broken curve in Fig. 1. The modulus is 
continuously and irreversibly reduced. This determines the shape of the quasi-static 
stress-strain pattern. 

It is important that the density of constraints is assumed to be constant during 
unloading (Go/&,, = Go&,,, = const; where A,,,, is the maximum strain in the first 
stretch). This is behind the typical hysteresis observed in the first stress-strain cycle. 
The restoring forces during unloading are too weak to release any junctions. Thus, 
the quasi-static unloading stress-strain curve provides information about the actual 
density of junctions in the network. With the aid of an appropriate theory, it should 
be possible to give the number of junctions released during the stretch. 

Under the given circumstances, the strain energy which is recovered is smaller 
than that stored during the first stretch. The entropy produced and transferred to 
the heat bath (which is the sample itself) is uniquely defined by the difference 
between the work put into the sample during the stretch and that fraction retained 
during unloading (at constant A,,,,) 

W stretch 

One recognizes that in the model used here the strain-dependent strain energy 
dissipation does not depend on the density of junctions. The dissipation of strain 
energy always displays the same relative features. Moreover, it can be seen from the 
plot in Fig. 2 that network-like systems show asymptotically the dissipation ratio 

rl 

05 
t 

--a------- -q 
I 

.I 5 10 A 

Fig. 2. The dissipated fraction of strain energy in a elastically stable, homogeneously extended and 
incompressible network-like system with maximum softening allowed for stability reasons. 
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This fraction gives the maximum dissipation of strain energy of network-like 
systems, the modulus of which is uniquely reduced under “quasi-static” deforma- 
tion conditions. For any other softening behaviour of stable network-like systems, 
the dissipation must be smaller. The dissipated strain energy increases, of course, if 
visco-elastic effects come into play (see Fig. 1). 

Far above the glass transition, the entropy production is spontaneous and 
approximately unique in strain rate. We arrive straightforwardly at the dissipation 
function Y 

TAi =Y =$(AH’(i)) 

With Eq. (28) we come directly to the formulation of the strain energy of our model 
system 

W=$ {2A2+C1 -3I} (31) 

The function AH’(A) in Eq. (30) is the difference between the strain energy 
increment of the softening network and the network of the reference with “quasi- 
permanent” junctions (G/A = const). We have then 

AW=c,(Z,.‘+il-3L)(&&) (32) 

So we arrive at the relation 

y =dAW . dl1 =G,(l +&-$)A; (33) 

The minimum entropy production of this type of network-like system with decreas- 
ing density of junctions, even under the condition dl/dt = const, depends on strain. 
At sufficiently large strains, the entropy production is predicted to become station- 
ary. This also holds qualitatively in real networks with finite chain length and 
global interactions. 

9. Cold-drawn polymer glasses: stress-strain behaviour 

Extending a polymer glass to large-strain plastic deformation can occur. The 
description of the stress-strain pattern of glassy polycarbonate [ 161 reveals, never- 
theless, the existence of a network composed of a set of strain-invariant constraints. 
Polymer glasses, when greatly strained, pass through activated states so as to satisfy 
the conditions of constrained internal equilibrium. 

The mechanical equation of state was defined by [ 161 

(34) 

f = $& + G,(A - I -2) 

f,, = (2 _ l),lj’,, e-c”- l)/Eyield 
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where Eog is the elastic modulus, Gp is the shear modulus of the network composed 
of strain-invariant constraints, eyield defines the yield strain, and A is the actual and 
A, the original cross-section of the sample. 

With the aid of the above equation, the stress-strain pattern of the heteroge- 
neously extended polycarbonate is fairly well reproduced by the calculation 
(Fig. 3(a)). The system is not stable everywhere. It undergoes a “jump-like” 
transformation into a thermodynamically non-neighboured state with greatly in- 
creased strain (A” > A’). A neck is formed. This “strain-induced” transformation 
satisfies all the criteria of a phase transition characterized by the coexistence of 
phases that are in a state of constrained equilibrium. The occurrence of the 
transition is strongly related to an existing network composed of quasi-permanent 
constraints (Gg(<Nglass)). 

One has to be aware that the energy-elastic force (first term on the right-hand- 
side of Eq. (34)) drops rapidly to zero at strains /1 > ;iyie,d = 1 + &yield. In the new 
phase (A” > A’), the strain energy changes as in a network. The strain energy is 
determined by a large “elastic” component stored in the short-chain network (B in 
Fig. 3(a)) and by the energy A (Fig. 1). The entropy in the network is clearly 
related to the segmental orientation [16]. Deformation runs by mechanically 
activated motions within the very short network composed of fixed constraints. The 
stress-strain pattern of a glass represents a well-defined sequence of constrained 
equlibrium states. Because the polymer glass is defect-saturated (related to equi- 
librium in the undercooled melt just above the glass transition), molecular configu- 
rations are changed without producing or annihilating defects. If friction is 
negligible, one might call this an ideal plastic deformation. 

10. Colddrawn polymer glasses: segmental orientation distribution 

In the sense of the above models, a polymer glass is a network-like system 
[3,16,28,29]. During the freezing process, a high density of constraints come into 
existence so that the liquid-like dynamics is frozen in. At temperatures far below the 
glass transition range, the set of constraints (<Nglass) = const. cannot be changed 
even during large deformations. Having extremely short chains (their lengths in the 
range of a monomer unit), strain-invariant segments are forced into high orienta- 
tion. Even if we do not know very much about the details of cooperations when a 
polymer glass is cold-drawn, our concept demands that: if the glass runs strain- 
activated through constrained equilibrium states (frozen-in when the force is 
released), the orientation distribution should satisfy the extremum condition [ 3,301 
as given in Eq. (8) 

(Sorient)T.p,~,(5Ng,ass) = maximum (35) 

Because the strain-invariant segments behave like anisometric rigid rods with a 
defined aspect ratio, the orientation distribution should be identical with the 
Oka-Kratky-Kuhn function [31,32]. We have calculated [3] how the second and 
fourth moments of the segmental orientation distribution of polycarbonate [3,34] 
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(4 

-JO- 

(b) 

Fig. 3. (a) Nominal stress pattern of polycarbonate (0) at 295 K stretched with a strain rate of 

dl/dt = 0.015% min-‘. The solid line is computed with the aid of Eq. (35) (parameters: Eog = 2000 MPa; 

&yield - - 0 085; G, = 34 MPa. (A) is the maximum strain energy needed for deforming the solid 
component; (B) is the work stored by the network during deformation. (b) Differential and total heat 

exchange during quasi-isothermal expansion of polycarbonate at T = 295 K: 0, experimental results; 

-, computed with the aid of Eq. (37). The parameters used were: Gs, = 6 MPa; TG,, = 28 MPa; d In 

a,,/dT = 0.002 K, d In E,,/dT = -0.0025 T K; 8s = 6.5 x 10m5 K. 
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are interrelated under the above supposition (Fig. 4(a)). Moreover, segmental 
orientation is enforced in a glass to occupy one of the configurations through which 
the system should run under constrained equilibrium conditions (& = const). The 
orientational entropy is then maximum [3,30] (see Fig. 4(b)). 

It is crucial that we prove this hypothesis in another way. 

11. Thermo-elasticity under constrained equilibrium conditions 

Whether or not the glass occupies a sequence of constrained equilibrium states 
during the stretch can be determined by discussing thermo-elastic properties under 
constrained equilibrium conditions. The appropriate equations were derived [ 161 

=!?!E eCi-l)l&yieldr_PgGgD +zD -BgGg 
/I 

8 In Eog 
1- = 3&(A - 1) + (2 - 1) F - &J. 

(36) 

+ e 
( 
p,n + (2 - 1) a I;? 

) 

where & is the linear expansion coefficient in the glassy state defined by 

a In L, 
&=y (37) 

The heats exchanged are measured in a Miiller-type stretching micro-calorimeter. 
From the data shown in Fig. 3(b) it can be seen that the calculation is relatively 
accurate. Internal equilibrium should therefore be very rapidly established. Below 
the level as determined by a set of strain-invariant hidden variables (& = cons&), 
strain-activated platzwechsel can only occupy “equilibrium configurations con- 
strained by a set of hidden variables”. 

Glasses may in fact be considered as network-like systems. The subsystems of 
deformation are the smallest possible segment aggregations that operate in mechan- 
ically activated states as subsystems of deformation. Segmental configurations 
below the network defined by (& = const,) satisfy the condition of local equi- 
librium. When the stretch is stopped one of the large number of possible equi- 
librium configurations is frozen in. 

12. Large extensions of semicrystalline polymers (LDPE) 

As another example we now discuss largely strained semi-crystalline systems. It is 
widely accepted that small crystals in semicrystalline polymers operate as active 
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Fig. 4. (a) The second (P2) and (P4) moments of cold-drawn polycarbonate according to Pietralla and 

Spiess [34]. The solid line is computed by using the principle that the segments should be oriented so as 

to maximize the orientational entropy. (b) - - -, the maximum entropy segmental orientation distribu- 
tion p(q); and -, the Kratky-Oka equation [3]. 

multi-functional fillers [ l-3,6,35]. They constitute a well-defined set of constraints. 
An important feature is that these crystals suffer plastic deformation, including 
melting and recrystallization processes. The density of the effective constraints is 
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therewith continuously diminished with strain. An interpretation of large deforma- 
tions of semicrystalline polymers should therefore clearly prove the utility of our 
model. 

13. Fundamental assumptions 

Equivalent subsystems of deformation should be represented by crystal clusters 
large enough to guarantee an affine transformation [ 1,3] (see Fig. 5). This demands 
a logical cooperation between rubbery layers and crystals. The forces exerted on 
both components should on average be equal to 

cf amoW( = Cf”“stals(n,,)) ,fmacro=opic(J) =f(l) (38) 

where &, il,,, 1 are the strains within the rubbery regions, the crystals and the 
macroscopic sample respectively. To describe the stress-strain behaviour in 
semicrystalline samples we apparently need only the mechanic equation of state of 
the rubbery regions, provided that the intrinsic strain within these regions is known. 
This quantity depends, of course, on the configuration of the crystals, and, 
therefore, also on how the colloid structure changes on strain. For eutectoid 
copolymers one succeeds in giving explicit formulations. 

14. The colloid-structure parameters 

The relations given here were deduced elsewhere [36,37]. The structure of the 
copolymer chains is characterized by the distribution of non-crystallization c-units 
(nc-units). The molar fraction x, of crystallizable units (c-units) is then defined by 

n, 
x =--- 

c 
nc + nnc 

xc + x,, = 1 

draw 
direction 

Fig. 5. Sketch of the cluster structure in a semicrystalline polymer and its transformation with strain. 
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where IZ, and n,,, are the mole numbers of c- and nc-units. A length distribution of 
c-sequences, each comprised of c-units only, is built up. For thermodynamic 
reasons, extended c-sequence crystals as mixed micro-phases are formed (EMCs). 
Their thickness distribution is uniquely determined by the c-sequence length distri- 
bution. We confine ourselves to the example of a random eutectoid copolymer with 
the distribution function given by 

XY = X2,&(T) - ’ (40) 

where y(T) is the smallest stable EMC. According to the conditions of coexistence 
in the eutecoid multi-component system, melting of EMCs runs selectively and 
consecutively starting at lowest temperature with EMCs of smallest thickness y(T). 
The relative molar fraction of EMCs therefore depends uniquely on temperature 
and is equal to 

wp = X:(=1 - ‘[u( T)X”, + x,] (41) 

The mean thickness of EMCs is deduced to be given by 

Yp=~+m (42) 

The total volume of the EMCs including the defect layers is assumed to operate as 
a “solid filler” [ 1,3]. 

15. The cluster network 

In the sketch of a cluster structure in a semicrystalline system and its transforma- 
tion during extension as drawn in Fig. 5, it is illustrated that a larger set of clusters 
should only be able to operate as a subsystem of deformation [ l-3,38-41]. In the 
unstrained system, they should be isotropically linked in their environments. The 
effective mean chain-length within a subsystem of deformation may then be defined 

by 

y,=ry,l 
)+)I/3 (43) 

P 

where a relates the length of the elastically effective chains to the mean distance 
between neighbouring crystals. Constraints in the sense of our approach are 
developed by ECMs which operate as multi-functional junctions whereby they 
themselves “fill” a well-defined volume. 

The crystals ensemble itself has to suffer plastic deformation by shear-sliding 
processes within the lamellae or by twinning, melting and recrystallization as other 
mechanism of plastic deformation [42,43]. It may happen, in addition, that chains 
are pulled out of ECMs and segmental slip occurs, so that the effective network 
chain length is steadily increased with strain. All these processes are found to be 
defined and logically interrelated. 
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The dependence of the chain length on strain was formulated elsewhere [l-3] 

* ym = ay,( T) I-u 0 
l/3 

Id= !!P 

24 1 
= (W&v) 1’3 

The hidden variable tN is here defined to be written as 

(44) 

(45) 

where &,, gives just the “rigid and active fraction of crystals” [ 1,3]. Due to 
softening, the distance to equilibrium is continuously and systematically reduced. 
Entropy is produced accordingly. We learn from the relation 

limit u = WA/, limit 5 ‘I3 = wb’, limit 1 -II3 = 0 (46) 
a-rm I+m I+00 

that at infinitely large strain, no junctions exist any more. 
In our model, heterogeneous deformation occurs. In comparison to the macro- 

scopic deformation, the rubbery regions may be extended to very high degrees. 
There “overdrawing” depends on the fraction of rigid and active crystals. This 
fraction is reduced due to plastic deformation. The mean field ansatz [ 1,3] 

l, _ 1 - 24 _ Jl - w,w’3 
’ 1-u 1 -(w&p (47) 

turned out to be reasonable. The hidden variable &,, gives just the fraction of active 
ECMs. 

The stress-strain pattern can then be described with the aid of the van der Waals 
model 

(48) 

whereby the maximum strain A,,,,, is related to the mean chain length y, according 
to 

Lax = JL 
so that the molecular weight of the chains A4, can be written as 

K = M”G,X 

(49) 

(50) 

where MU is the molecular weight of the strain-invariant (“entropy-invariant”) unit. 

16. Branched polyethylene at large extensions 

With the parameters as given in Table 1, quasi-static stress-strain patterns of 
low-density polyethylene (LDPE) were fairly well described (Fig. 6). In the small- 
strain regime, there are some discrepancies. The nominal force is otherwise correctly 
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Table 1 

The primary structure parameters of LDPE a 

T/K Y, Y(T) y, Wr; 

293 35.4 28 57 0.76 
303 42.4 30 59 0.73 
313 52.4 34 63 0.69 
323 69.1 38 67 0.64 
333 88.4 43 72 0.58 
343 101.1 45 74 0.56 
353 151.3 53 82 0.47 
363 274.2 68 95 0.34 

a x,, = 0.33; MU = 14 g mol-‘; c( = 6.5; thermodynamic parameters from Refs. [ 1,2,3,35,36]. 

reproduced. The cluster network is composed of primary structure elements. The 
number and shape of these elements (ECMs,w,) depend on temperature as pre- 
dicted by the thermodynamics of eutectoid copolymers. 

Whether or not we can identify subsystems of deformation is now crucial. Their 
existence is indicated with the results shown in Fig. 7. Independent of a sophisti- 
cated cooling or heating program, one observes at each temperature the same 
stress-strain curve. This is understandable if a defined configuration of constraints 
exists, which changes irreversibly at each temperature, but in the same manner with 
strain. This conclusion was the reason for defining relationships (44) and (45). The 
constraints are, however, disposed by the ECMs themselves in unique dependence 
on the crystallinity. The hidden variable tN seems to characterize the deformation 
of the subsystems. To guarantee their affine transformation an increasing fraction 
of the crystals has to be “plasticized”. 

In any case, Eq. (48) represents a generalized equation of state defined by 

(51) 

It is possible to formulate the thermo-elastic equations of state. This has been done 
recently [3]. Here, we only give a comparison between experiment and calculation, 
see Fig. 8. Surprisingly, the strain energy is in fact totally transformed into heat in 
the large strain regime (2 > 1.5)(AQ/AW = 1). The system behaves in a network- 
like manner with a decreasing density of junctions that is accompanied by a nearly 
instantaneous entropy production. Hence, the stress-strain behaviour of LDPE can 
be treated at each temperature as a sequence of equilibrium states, the constraints 
of which vary uniquely with strain. 

In the small-strain regime, effects come into play which are very much larger than 
the classical Thomson-effect. This discrepancy has not yet been interpreted. 

First principles seem to regulate cooperation between the crystals and non- 
crystallized regions. The mechanisms are coupled so as to minimize strain energy. 
This statement is equivalent to assuming the existence of subsystems of minimum 
size. In each constrained equilibrium state, the entropy is maximum (being, of 
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Fig. 6. Stress-strain pattern of LDPE measured at the temperatures indicated. Solid lines are 
with Eqs. (25) and (48) using the parameters listed in Table I. 
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course, smaller than in the limits of absolute equilibrium), while the internal energy 
is minimum. This is in good agreement with the discovery that in the large-strain 
regime, semicrystalline systems behave in a network-like manner. The total heat 
exchanged during deformation is identical with that of a permanent, purely 
entropy-elastic network. We have, however, shown above that a defined fraction of 
strain energy of the networks with a decreasing density of junctions should be 
dissipated. This must also be true for semicrystalline LDPE. The above results are 
understandable only if the entropy production is always minimum. According to 
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Fig. 7. Stress-strain measurements (solid line) of LDPE [l]. Elongation was stopped on changing the 
temperature. Different traces are indicated with extra symbols. 
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Fig. 8. Quotient of heat and work of deformation Q/W xf,/fof LDPE measured at 313 K by increasing 
strain stepwise [3]. 
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the thermodynamics of irreversible processes, the underlying processes should then 
run under stationary conditions. 

In agreement with these conclusions, the orientational entropy of crystals is 
maximum so as to satisfy Eq. (8) [3]. In addition, shear sliding within the crystal 
core seems only to run across minimum energy planes. Hence, during deformation, 
semicrystalline systems pass through a sequence of constrained equilibrium states. 
The density of constraints is diminished with strain. 

17. Some speculative suggestions 

The results discussed indicate a method as to how constrained non-equilibrium 
states in network-like polymer systems may be described. The situation seems to be 
controlled by the operation of equivalent subsystems of deformation. Their level is 
constituted by a set of constraints which form a global network. The size of the 
subsystems reaches a minimum value in polymer glasses because of being nearly 
identical with the dimensions at which a liquid-like short-range order is observed. 
This is equivalent to having the highest density of quasi-permanent constraints. In 
semicrystalline systems the subsystems are substantially larger, being comprised of 
a defined number of clusters. The topological features of these equivalent subsys- 
tems are substantially different from those of a polymer glass. Yet, many different 
systems behave in a network-like manner. The systems discussed display similarities 
in the large-strain regime. Here, entropy changes are dominant, proving in both 
cases the existence of a network of equivalent subsystems. 

The energies dissipated are strictly controlled by the network properties, includ- 
ing softening effects and plastic deformation. The behaviour is also modified by the 
temperature-induced changes of an extra set of hidden variables. In glassy polycar- 
bonate, this explains the temperature dependence of yielding [ 161. In semicrystalline 
systems this leads to a softening in the stress-strain behaviour at elevated temper- 
atures [ 1,3]. 

Network-like polymer systems seem to display “functional self-similarity”. The 
mechanisms are coordinated so as to guarantee an affine transformation, at least of 
the subsystems of deformation. Any larger volume is then per definition trans- 
formed according to the law of affinity. But it is noteworthy that below this level 
defined by constraints &,,, the thermodynamic extremum principles are also sa- 
tisfied. Hence, network-like systems do “optimize” themselves. 

It was important that we had knowledge of the total energies. The strain energy 
and the heats exchanged were measured during deformation in a stretching micro- 
calorimeter. The power of such a device is impressively demonstrated with the 
discovery that semicrystalline polymers like LDPE are fully entropy-controlled in 
the regime of I > 1.5. Nobody would a priori suggest this striking behaviour. 
Hence, knowledge of the total energy balance allows the nature of the deformation, 
including irreversible processes, to be identified. It is more gratifying that Mi.iller 
and Engelter had the idea of measuring the total energy balance and designed an 
appropriate apparatus [ 171. 



H.G. KilianlThermochimica Acta 247 (1994) 65-86 85 

Finally we have to confess that despite knowing general rules, we can still not 
explain how or why the special mechanism in these very different systems is activated. 

References 

[I] J. Mayer, W. Schrodi, B. Heise and H.G. Kilian, Acta Polymerica, 41 (1990) 363. 

[2] E. Paul, B. Heise, W. Schrodi and H.G. Kilian, Prog. Coil. Polym. Sci. 85 (1991) 12. 

[3] H.G. Kilian, W. Knechel, B. Heise and M. Zrinyi, Progr. Coll. Polym. Sci., 92 (1993) 60. 

[4] 0. Kramer, in J.E. Mark and B. Ennan (Eds.), Elastomeric Polymer Networks, Prentice Hall, 

Englewood Cliffs, 1992. 

[S] W.W. Graessley, Macromolecules, 8 (1975) 186. 

[6] I.M. Ward, Structure and Properties of Oriented Polymers, Applied Science Publishers, London, 

1975. 

[7] R. Haase, Thennodynamik der irreversiblen Prozesse, Fortschritte der Physikalischen Chemie Vol. 

8, Steinkopff Verlag, Darmstadt, 1963. 

[8] H. Baur, Einfiihrung in die Thermodynamik der irreversiblen Prozesse, Wissenschaftliche 

Buchgesellschaft, Darmstadt, 1984. 

[9] H.B. Callen, Thermodynamics, John Wiley, New York, 1960. 
[IO] S. Groot and P.de u. Mazur, Non-Equilibrium Thermodynamics, North-Holland, Amsterdam, 

1962. 

[ 1 I] J.U. Keller, Thermodynamik der irreversiblen Prozesse, Teil 1, Walter de Gruyter, Berlin New 

York, 1977. 

[ 121 I. Prigogine, Introduction to Thermodynamics of Irreversible Processes, Wiley, New York, 1961. 

[13] H.G. Kilian and Th. Vilgis, Coll. Polym. Sci., 262 (1984) 691. 

[ 141 H.F. Enderle, H.G. Kilian and Th. Vilgis, Coll. Polym. Sci., 262 (1984) 696. 

[ 151 V. Kraus, H.G. Kilian and W. v. Soden, Progr. Coll. Polym. Sci., 90 (1992) 27. 

[ 161 J.A. Koenen, B. Heise, and H.-G. Kilian, J. Polym. Sci., Polym. Phys. Ed., 27 (1989) 1235. 

[I71 F.H. Miiller and A. Engelter, Kolloid Z. Z. Polym., 152 (1957) 15. 

[18] D. Giiritz and F.H. Miiller, Kolloid Z. Z. Polym., 251 (1973) 892. 

[ 191 Yk. Godovsky, Adv. Polym. Sci., 259 (1981) 611. 

[20] H.G. Kilian, G. Hohne, P. Triigele and H. Ambacher, J. Polym. Sci. Symp., 77 (1984) 221. 

[21] R.N.J. Conradt, B. Heise and H.G. Kilian, Progr. Coil. Polym. Sci., 87 (1992) 85. 

[22] P. Glanzdorff, I. Prigogine, Thermodynamic Theory of Structure, Stability and Fluctuations, 

Wiley-Interscience, London 1971. 

[23] A.E. Green and J.E. Atkins, Large Elastic Deformation, Clarendon Press, Oxford, 1970. 

[24] L.R.G. Treloar, The Physics of Rubber-Elasticity, Clarendon Press, Oxford, 1958. 

[25] J.E. Mark and B. Ennan, Rubberlike Elasticity - A Molecular Primer, John Wiley, New York, 

1988. 

[26] W. Kuhn and F. Grim, Kolloid Z., 101 (1942) 248. 

[27] A.S. Lodge, R.C. Armstrong, M.H. Wagner and H.H. Winter, Pure Appl. Chem., 54 (1982) 

1359. 

[28] F.H. Muller, Kolloid Z., 114 (1949) 59. 

[29] M. Dettenmaier, Adv. Polym. Sci., 52/53 (1983) 57. 

[30] D.I. Bower, J. Polym. Sci., Polym. Phys. Ed., 19 ( 1981) 93. 

[31] 0. Kratky, Kolloid Z., 64 (1933) 213. 

[32] S. Oka, Kolloid Z., 86 (1939) 242. 

[33] R. Weeger, M. Pietralla, L. Peetz, and J.K. Kruger, Coll. Polym. Sci., 266 (1988) 692. 
[34] V.D. Vogt, M. Dettenmaier, H. W. Spiess and M. Pietralla, Coll. Polym. Sci., 268 (1990) 22. 

1351 I.M. Ward, Mechanical Properties of Solid Polymers, Wiley-Interscience, London, 1971. 
[36] W. Glenz, H.G. Kilian, D. Klattenhoff and F. Stracke, Polymer, I8 (1977) 685. 

[37] H.G. Kilian, Progr. Coll. Polym. Sci., 78 (1988) 161. 

[38] A. Peterlin, J. Mater. Sci., 6 (1971) 490. 



86 H.G. Kilian/Thermochimica Acta 247 (1994) 65-86 

[39] A. Peterlin, in A Cifferi and I.M. Ward (Eds.), Ultrahigh Modulus Polymers, Applied Scie 

Publishers, London, 1979. 

[40] B. Wunderlich, Macromolecular Physics, Academic Press, New York, 1973. 

[41] G.E. Attenburrow and D.C. Bassett, Polymer, 20 (1979) 1313. 

[42] R.J. Young, Introduction to Polymers, Chapman and Hall, London, 1983. 

[43] A. Kinloch and R.J. Young, Fracture Behaviour of Polymers, Elsevier, London, 1988. 


